Skip to contents

As this is the main workhorse function with a lot going on under the hood it is advised to have a look at the vignettes or even better the package website as they provide a detailed hands on and theoretical documentation of what this function is doing and how it is intended to be used. For a short summarized explanation have a look at the Details section below.

Usage

estimate_risk_roll(
  data,
  weights = NULL,
  marginal_settings,
  vine_settings,
  alpha = 0.05,
  risk_measures = c("VaR", "ES_mean"),
  n_samples = 1000,
  cond_vars = NULL,
  cond_u = 0.05,
  n_mc_samples = 1000,
  trace = FALSE,
  cutoff_depth = NULL,
  prior_resid_strategy = FALSE
)

Arguments

data

Matrix, data.frame or other object coercible to a data.table storing the numeric asset returns in the named columns (at least 3). Moreover missing values must be imputed beforehand.

weights

Corresponding named non-negative weights of the assets (conditioning variables must have weight 0). Default NULL gives equal weight of 1 to each non conditional asset. Alternatively one can use a matrix with as many rows as vine windows for changing weights. The matrix must have column names corresponding to the assets and conditional assets have to have weight 0.

marginal_settings

marginal_settings S4 object containing the needed information for the ARMA-GARCH i.e. marginal models fitting. Note that the marginal_settings and vine_settings objects have to match as described further below.

vine_settings

vine_settings S4 object containing the needed information for the vine copula model fitting. Note that the marginal_settings and vine_settings objects have to match as described further below.

alpha

Numeric vector specifying the confidence levels in (0,1) at which the risk measures should be calculated.

risk_measures

Character vector with valid choices for risk measures to estimate. Currently available are the Value at Risk VaR which is implemented in est_var() and 3 estimation methods of the Expected Shortfall ES_mean, ES_median and ES_mc all implemented in est_es() .

n_samples

Positive count of samples to be used at the base of the risk measure estimation.

cond_vars

Names of the variables to sample conditionally from (currently \(\le 2\) variables).

cond_u

Numeric vector specifying the corresponding quantiles in (0,1) of the conditional variable(s) conditioned on which the conditional risk measures should be calculated. Additionally always the conditioning values corresponding to the residual of one time unit prior are used as conditional variables (cond_u = 'prior_resid' in the risk measure output) if the flagprior_resid is set to TRUE, otherwise the conditioning values corresponding to the realized residual are used (cond_u = 'resid' in the risk measure output). The latter case corresponds to the default.

n_mc_samples

Positive count of samples for the Monte Carlo integration if the risk measure ES_mc is used. (See est_es())

trace

If set to TRUE the algorithm will print a little information while running.

cutoff_depth

Positive count that specifies the depth up to which the edges of the to be constructed D-vine copula are considered in the algorithm that determines the ordering for the D-vine fitting using partial correlations. The default NULL considers all edges and seems in most use cases reasonable. This argument is only relevant if D-vines are used.

prior_resid_strategy

Logical flag that indicates whether as the additionally used conditioning values the prior day residual (if this flag is TRUE) or the realized residuals are used. The default are the realized residuals. Note that the resulting conditional risk measures use realized data so they are only for comparisons as they suffer from information leakage.

Value

In the unconditional case an S4 object of class portvine_roll and in the conditional case its child class cond_portvine_roll. For details see portvine_roll.

Details

Roughly speaking the function performs the following steps for the unconditional risk measure estimation:

  • Fit for each asset marginal time series models i.e. ARMA-GARCH models in a rolling window fashion. The models as well as the rolling window size and training size are specified via the marginal_settings argument.

  • Model the dependence between the assets with a vine copula model trained on the standardized residuals transformed to the copula scale via the probability integral transform. This is also performed in a rolling window fashion where one can use the same window size for the vine windows as used for the marginal ones or a smaller window size. This window size, the training size for the vine copula as well as the copula fitting arguments are specified via the vine_settings argument.

  • Using the copula and the forecasted means and volatilities of the assets one simulates n_samples many forecasted portfolio level log returns for every time unit in every specified rolling window.

  • Based on these samples one estimates portfolio level risk measures.

Additionally one can perform conditional risk measure estimation with up to two conditional log return series like market indices. Using this approach does not change the marginal models part but for the copula a D-vine with a special ordering i.e. the index or the indices are fixed as the rightmost leafs is fitted. One then simulates conditional forecasted portfolio log returns which then results in conditional risk measure estimates that can be particularly interesting in stress testing like situations. One conditions on a pre-specified quantile level (cond_u) of the conditioning assets (cond_vars) and for comparison one also conditions either on the behavior of the conditioning asset one time unit before (prior_resid_strategy = TRUE) or the realized behavior of the conditioning asset (prior_resid_strategy = FALSE).

Matching marginal and vine settings

First of all there must be at least 2 marginal windows. Thus train_size + refit_size slot in the marginal_settings class object must be smaller than the overall input data size. Moreover the refit_size of the marginal models must be dividable by the refit_size of the vine copula models e.g. possible combinations are 50 and 50, 50 and 25, 50 and 10. Furthermore the train_size of the vines must be smaller or equal to the train_size of the marginal models.

Parallel processing

This function uses the future framework for parallelization that allows maximum flexibility for the user while having safe speedups for example regarding random number generation. The default is of course the standard non parallel sequential evaluation. The user has to do nothing in order for this default to work. If the user wants to run the code in parallel there are many options from parallel on a single machine up to a high performance compute (HPC) cluster, all of this with just one setting switch i.e. by calling the function future::plan() with the respective argument before the function call. Common options are future::plan("multisession") which works on all major operating systems and uses all available cores to run the code in parallel local R sessions. To specify the number of workers use future::plan("multisession", workers = 2). To go back to sequential processing and to shut down the parallel sessions use future::plan("sequential"). For more information have a look at future::plan(). The two following loops are processed in parallel by default if a parallel future::plan() is set:

  • The marginal model fitting i.e. all assets individually in parallel.

  • The vine windows i.e. the risk estimates and the corresponding vine copula models are computed in parallel for each rolling vine window.

In addition the function allows for nested parallelization which has to be done with care. So in addition to the 2 loops above one can further run each computation for each time unit in the vine windows in parallel which might be especially interesting if the n_samples argument is large. Then the default parallelization has to be tweaked to not only parallelize the first level of parallelization which are the 2 loops above. This can be achieved e.g. via future::plan(list(future::tweak(future::multisession, workers = 4), future::tweak(future::multisession, workers = 2))). This setting would run the 2 primary loops in 4 parallel R sessions and in addition each of the 4 primary parallel sessions would itself use 2 sessions within the nested parallel loop over the time units in the vine window. This results in a need for at least 2 times 4 so 8 threads on the hardware side. More details can be found in the extensive documentation of the future framework.

Author

Emanuel Sommer

Examples

# For better illustrated examples have a look at the vignettes
# and/or the package website.
# \donttest{
data("sample_returns_small")
ex_marg_settings <- marginal_settings(
  train_size = 900,
  refit_size = 50
)
ex_vine_settings <- vine_settings(
  train_size = 100,
  refit_size = 50,
  family_set = c("gaussian", "gumbel"),
  vine_type = "dvine"
)
# unconditionally
risk_roll <- estimate_risk_roll(
  sample_returns_small,
  weights = NULL,
  marginal_settings = ex_marg_settings,
  vine_settings = ex_vine_settings,
  alpha = c(0.01, 0.05),
  risk_measures = c("VaR", "ES_mean"),
  n_samples = 10,
  trace = FALSE
)
# conditional on one asset
risk_roll_cond <- estimate_risk_roll(
  sample_returns_small,
  weights = NULL,
  marginal_settings = ex_marg_settings,
  vine_settings = ex_vine_settings,
  alpha = c(0.01, 0.05),
  risk_measures = c("VaR", "ES_mean"),
  n_samples = 10,
  cond_vars = "GOOG",
  cond_u = c(0.05, 0.5),
  trace = FALSE,
  prior_resid_strategy = TRUE
)

# have a superficial look
risk_roll_cond
#> An object of class <cond_portvine_roll>
#> Conditional variable(s): GOOG 
#> Number of ARMA-GARCH/ marginal windows: 2 
#> Number of vine windows: 2 
#> Risk measures estimated: VaR ES_mean 
#> Alpha levels used: 0.01 0.05 
#> 
#> Time taken: 0.1372 minutes 
# a slightly more detailed look
summary(risk_roll_cond)
#> An object of class <cond_portvine_roll>
#> 
#> --- Conditional settings ---
#> Conditional variable(s): GOOG 
#> Number of conditional estimated risk measures: 1200 
#> Conditioning quantiles: 0.05 0.5 
#> 
#> --- Marginal models ---
#> Number of ARMA-GARCH/ marginal windows: 2 
#> Train size:  900 
#> Refit size:  50 
#> 
#> --- Vine copula models ---
#> Number of vine windows: 2 
#> Train size:  100 
#> Refit size:  50 
#> Vine copula type:  dvine 
#> Vine family set:  gaussian gumbel 
#> 
#> --- Risk estimation ---
#> Risk measures estimated: VaR ES_mean 
#> Alpha levels used: 0.01 0.05 
#> Number of estimated risk measures: 400 
#> Number of samples for each risk estimation: 10 
#> 
#> Time taken: 0.1372 minutes. 

# actually use the results by extracting important fitted quantities
fitted_vines(risk_roll_cond)
#> [[1]]
#> 3-dimensional vine copula fit ('vinecop')
#> nobs = 100   logLik = 54.82   npars = 3   AIC = -103.64   BIC = -95.82   
#> 
#> [[2]]
#> 3-dimensional vine copula fit ('vinecop')
#> nobs = 100   logLik = 67.96   npars = 3   AIC = -129.93   BIC = -122.11   
#> 
fitted_marginals(risk_roll_cond)
#> $AAPL
#> 
#> *-------------------------------------*
#> *              GARCH Roll             *
#> *-------------------------------------*
#> No.Refits		: 2
#> Refit Horizon	: 50
#> No.Forecasts	: 100
#> GARCH Model		: sGARCH(1,1)
#> Distribution	: sstd 
#> 
#> Forecast Density:
#>                Mu  Sigma   Skew  Shape Shape(GIG) Realized
#> 1972-06-20 0.0016 0.0139 1.0245 3.4459          0   0.0061
#> 1972-06-21 0.0016 0.0137 1.0245 3.4459          0  -0.0363
#> 1972-06-22 0.0009 0.0153 1.0245 3.4459          0   0.0138
#> 1972-06-23 0.0012 0.0152 1.0245 3.4459          0   0.0149
#> 1972-06-24 0.0014 0.0152 1.0245 3.4459          0   0.0109
#> 1972-06-25 0.0015 0.0151 1.0245 3.4459          0  -0.0040
#> 
#> ..........................
#>                Mu  Sigma   Skew  Shape Shape(GIG) Realized
#> 1972-09-22 0.0012 0.0118 1.0413 3.5337          0   0.0038
#> 1972-09-23 0.0012 0.0116 1.0413 3.5337          0   0.0000
#> 1972-09-24 0.0012 0.0114 1.0413 3.5337          0  -0.0257
#> 1972-09-25 0.0007 0.0124 1.0413 3.5337          0   0.0002
#> 1972-09-26 0.0008 0.0122 1.0413 3.5337          0   0.0028
#> 1972-09-27 0.0009 0.0120 1.0413 3.5337          0  -0.0109
#> 
#> Elapsed: 1.084382 secs
#> 
#> $GOOG
#> 
#> *-------------------------------------*
#> *              GARCH Roll             *
#> *-------------------------------------*
#> No.Refits		: 2
#> Refit Horizon	: 50
#> No.Forecasts	: 100
#> GARCH Model		: sGARCH(1,1)
#> Distribution	: sstd 
#> 
#> Forecast Density:
#>               Mu  Sigma   Skew  Shape Shape(GIG) Realized
#> 1972-06-20 6e-04 0.0106 0.9752 4.1755          0  -0.0042
#> 1972-06-21 5e-04 0.0104 0.9752 4.1755          0  -0.0171
#> 1972-06-22 2e-04 0.0120 0.9752 4.1755          0   0.0079
#> 1972-06-23 7e-04 0.0117 0.9752 4.1755          0   0.0090
#> 1972-06-24 9e-04 0.0116 0.9752 4.1755          0  -0.0005
#> 1972-06-25 7e-04 0.0110 0.9752 4.1755          0   0.0051
#> 
#> ..........................
#>               Mu  Sigma   Skew  Shape Shape(GIG) Realized
#> 1972-09-22 5e-04 0.0108 0.9821 4.2039          0  -0.0012
#> 1972-09-23 6e-04 0.0105 0.9821 4.2039          0  -0.0033
#> 1972-09-24 6e-04 0.0103 0.9821 4.2039          0  -0.0032
#> 1972-09-25 6e-04 0.0101 0.9821 4.2039          0  -0.0070
#> 1972-09-26 4e-04 0.0101 0.9821 4.2039          0  -0.0012
#> 1972-09-27 6e-04 0.0099 0.9821 4.2039          0  -0.0017
#> 
#> Elapsed: 1.08075 secs
#> 
#> $AMZN
#> 
#> *-------------------------------------*
#> *              GARCH Roll             *
#> *-------------------------------------*
#> No.Refits		: 2
#> Refit Horizon	: 50
#> No.Forecasts	: 100
#> GARCH Model		: sGARCH(1,1)
#> Distribution	: sstd 
#> 
#> Forecast Density:
#>                Mu  Sigma   Skew  Shape Shape(GIG) Realized
#> 1972-06-20 0.0011 0.0145 1.0226 3.2239          0  -0.0079
#> 1972-06-21 0.0012 0.0144 1.0226 3.2239          0  -0.0259
#> 1972-06-22 0.0004 0.0150 1.0226 3.2239          0   0.0115
#> 1972-06-23 0.0025 0.0149 1.0226 3.2239          0   0.0157
#> 1972-06-24 0.0012 0.0149 1.0226 3.2239          0  -0.0006
#> 1972-06-25 0.0014 0.0148 1.0226 3.2239          0  -0.0047
#> 
#> ..........................
#>                Mu  Sigma   Skew  Shape Shape(GIG) Realized
#> 1972-09-22 0.0013 0.0153 1.0288 3.4609          0  -0.0024
#> 1972-09-23 0.0013 0.0151 1.0288 3.4609          0  -0.0055
#> 1972-09-24 0.0012 0.0149 1.0288 3.4609          0   0.0072
#> 1972-09-25 0.0018 0.0148 1.0288 3.4609          0   0.0047
#> 1972-09-26 0.0013 0.0146 1.0288 3.4609          0   0.0032
#> 1972-09-27 0.0016 0.0144 1.0288 3.4609          0  -0.0141
#> 
#> Elapsed: 1.149987 secs
#> 

# and of course most importantly the risk measure estimates
risk_estimates(
  risk_roll,
  risk_measures = "ES_mean",
  alpha = 0.05, exceeded = TRUE
)
#>     risk_measure    risk_est alpha row_num vine_window      realized exceeded
#> 1        ES_mean -0.07295805  0.05     901           1 -0.0060446548    FALSE
#> 2        ES_mean -0.03290882  0.05     902           1 -0.0792850109     TRUE
#> 3        ES_mean -0.06805028  0.05     903           1  0.0331630350    FALSE
#> 4        ES_mean -0.03583559  0.05     904           1  0.0396444178    FALSE
#> 5        ES_mean -0.01870834  0.05     905           1  0.0098307520    FALSE
#> 6        ES_mean -0.02142929  0.05     906           1 -0.0035546832    FALSE
#> 7        ES_mean -0.02547554  0.05     907           1 -0.0549415153     TRUE
#> 8        ES_mean -0.02449734  0.05     908           1 -0.0048120862    FALSE
#> 9        ES_mean -0.04201450  0.05     909           1 -0.0116750983    FALSE
#> 10       ES_mean -0.03853510  0.05     910           1  0.0500823533    FALSE
#> 11       ES_mean -0.02395931  0.05     911           1 -0.0055013938    FALSE
#> 12       ES_mean -0.03817386  0.05     912           1 -0.0164475619    FALSE
#> 13       ES_mean -0.02278573  0.05     913           1 -0.0097478129    FALSE
#> 14       ES_mean -0.02706067  0.05     914           1  0.0085510175    FALSE
#> 15       ES_mean -0.03796080  0.05     915           1  0.0254935553    FALSE
#> 16       ES_mean -0.06939725  0.05     916           1  0.0257264559    FALSE
#> 17       ES_mean -0.04560588  0.05     917           1  0.0277721259    FALSE
#> 18       ES_mean -0.06687216  0.05     918           1 -0.0042152555    FALSE
#> 19       ES_mean -0.06665762  0.05     919           1 -0.0349681922    FALSE
#> 20       ES_mean -0.02523827  0.05     920           1  0.0008786021    FALSE
#> 21       ES_mean -0.01767372  0.05     921           1  0.0166985327    FALSE
#> 22       ES_mean -0.02601986  0.05     922           1 -0.0405427416     TRUE
#> 23       ES_mean -0.04755827  0.05     923           1  0.0331199507    FALSE
#> 24       ES_mean -0.05056931  0.05     924           1  0.0039553287    FALSE
#> 25       ES_mean -0.03124714  0.05     925           1  0.0128577234    FALSE
#> 26       ES_mean -0.03343012  0.05     926           1 -0.0267688040    FALSE
#> 27       ES_mean -0.04297314  0.05     927           1 -0.0006434490    FALSE
#> 28       ES_mean -0.02859857  0.05     928           1 -0.0262126037    FALSE
#> 29       ES_mean -0.05233991  0.05     929           1  0.0033384649    FALSE
#> 30       ES_mean -0.09551624  0.05     930           1 -0.0029087903    FALSE
#> 31       ES_mean -0.03039656  0.05     931           1 -0.0252220647    FALSE
#> 32       ES_mean -0.03709922  0.05     932           1 -0.0239892893    FALSE
#> 33       ES_mean -0.04276227  0.05     933           1 -0.0331961832    FALSE
#> 34       ES_mean -0.05135546  0.05     934           1  0.0200051369    FALSE
#> 35       ES_mean -0.02613476  0.05     935           1  0.0410831353    FALSE
#> 36       ES_mean -0.03107721  0.05     936           1  0.0049106979    FALSE
#> 37       ES_mean -0.04841006  0.05     937           1  0.0206976658    FALSE
#> 38       ES_mean -0.02072873  0.05     938           1 -0.0103703417    FALSE
#> 39       ES_mean -0.07969336  0.05     939           1  0.0068955614    FALSE
#> 40       ES_mean -0.08728625  0.05     940           1 -0.0042075885    FALSE
#> 41       ES_mean -0.16836889  0.05     941           1  0.0472190581    FALSE
#> 42       ES_mean -0.01343368  0.05     942           1  0.0174462155    FALSE
#> 43       ES_mean -0.05246998  0.05     943           1  0.0029622239    FALSE
#> 44       ES_mean -0.02078698  0.05     944           1 -0.0079606363    FALSE
#> 45       ES_mean -0.03211513  0.05     945           1  0.0290050274    FALSE
#> 46       ES_mean -0.02411815  0.05     946           1  0.0009861917    FALSE
#> 47       ES_mean -0.02570387  0.05     947           1  0.0102032712    FALSE
#> 48       ES_mean -0.02198101  0.05     948           1  0.0239672051    FALSE
#> 49       ES_mean -0.01867714  0.05     949           1  0.0066334433    FALSE
#> 50       ES_mean -0.08972825  0.05     950           1 -0.0158926637    FALSE
#> 51       ES_mean -0.02820460  0.05     951           2 -0.0428770390     TRUE
#> 52       ES_mean -0.05405215  0.05     952           2  0.0017742398    FALSE
#> 53       ES_mean -0.03134242  0.05     953           2 -0.0377435814     TRUE
#> 54       ES_mean -0.01753723  0.05     954           2  0.0179789801    FALSE
#> 55       ES_mean -0.01815623  0.05     955           2 -0.0045997955    FALSE
#> 56       ES_mean -0.02319757  0.05     956           2  0.0050882039    FALSE
#> 57       ES_mean -0.01705137  0.05     957           2  0.2062438419    FALSE
#> 58       ES_mean -0.05289768  0.05     958           2  0.0290894526    FALSE
#> 59       ES_mean -0.05768324  0.05     959           2  0.0083306529    FALSE
#> 60       ES_mean -0.03701506  0.05     960           2 -0.0055718246    FALSE
#> 61       ES_mean -0.04675399  0.05     961           2 -0.0012467665    FALSE
#> 62       ES_mean -0.02561678  0.05     962           2  0.0482427451    FALSE
#> 63       ES_mean -0.03811243  0.05     963           2  0.0118178873    FALSE
#> 64       ES_mean -0.05271840  0.05     964           2  0.0126621081    FALSE
#> 65       ES_mean -0.09174228  0.05     965           2  0.0230449564    FALSE
#> 66       ES_mean -0.05700565  0.05     966           2 -0.0136554800    FALSE
#> 67       ES_mean -0.08416951  0.05     967           2 -0.0133549994    FALSE
#> 68       ES_mean -0.08171748  0.05     968           2 -0.0028859506    FALSE
#> 69       ES_mean -0.03203527  0.05     969           2 -0.0082197477    FALSE
#> 70       ES_mean -0.02316131  0.05     970           2 -0.0272196497     TRUE
#> 71       ES_mean -0.03431250  0.05     971           2  0.0325291332    FALSE
#> 72       ES_mean -0.05361914  0.05     972           2 -0.0251776577    FALSE
#> 73       ES_mean -0.05717397  0.05     973           2 -0.0048611406    FALSE
#> 74       ES_mean -0.03398768  0.05     974           2  0.0457490940    FALSE
#> 75       ES_mean -0.03939199  0.05     975           2  0.0264002730    FALSE
#> 76       ES_mean -0.04624017  0.05     976           2  0.0300177806    FALSE
#> 77       ES_mean -0.03287118  0.05     977           2  0.0161965898    FALSE
#> 78       ES_mean -0.05823796  0.05     978           2 -0.0142138901    FALSE
#> 79       ES_mean -0.10501685  0.05     979           2 -0.0733127141    FALSE
#> 80       ES_mean -0.03862044  0.05     980           2  0.0268845682    FALSE
#> 81       ES_mean -0.04268248  0.05     981           2 -0.0280441016    FALSE
#> 82       ES_mean -0.05399411  0.05     982           2 -0.0435108609    FALSE
#> 83       ES_mean -0.06319556  0.05     983           2  0.0122123253    FALSE
#> 84       ES_mean -0.03441865  0.05     984           2  0.0187544970    FALSE
#> 85       ES_mean -0.03526047  0.05     985           2  0.0205165005    FALSE
#> 86       ES_mean -0.05354182  0.05     986           2  0.0081176864    FALSE
#> 87       ES_mean -0.02339037  0.05     987           2  0.0291318680    FALSE
#> 88       ES_mean -0.08920903  0.05     988           2 -0.0095197782    FALSE
#> 89       ES_mean -0.09732615  0.05     989           2  0.0026235462    FALSE
#> 90       ES_mean -0.18264000  0.05     990           2  0.0165471020    FALSE
#> 91       ES_mean -0.01415583  0.05     991           2  0.0284908983    FALSE
#> 92       ES_mean -0.05580052  0.05     992           2  0.0357353231    FALSE
#> 93       ES_mean -0.02155877  0.05     993           2 -0.0194203462    FALSE
#> 94       ES_mean -0.03529106  0.05     994           2 -0.0147090394    FALSE
#> 95       ES_mean -0.02696400  0.05     995           2  0.0001064920    FALSE
#> 96       ES_mean -0.02730927  0.05     996           2 -0.0087683229    FALSE
#> 97       ES_mean -0.02436887  0.05     997           2 -0.0217268278    FALSE
#> 98       ES_mean -0.02125219  0.05     998           2 -0.0021598816    FALSE
#> 99       ES_mean -0.08957304  0.05     999           2  0.0048795256    FALSE
#> 100      ES_mean -0.02930573  0.05    1000           2 -0.0266539889    FALSE
risk_estimates(
  risk_roll_cond,
  risk_measures = "ES_mean",
  alpha = 0.05, exceeded = TRUE,
  cond_u = c("prior_resid", 0.5)
)
#>     risk_measure      risk_est alpha row_num          GOOG      cond_u
#> 1        ES_mean -0.0180482647  0.05     901  6.996830e-04         0.5
#> 2        ES_mean -0.0147439242  0.05     901 -2.757591e-03 prior_resid
#> 3        ES_mean -0.0160043933  0.05     902  6.496964e-04         0.5
#> 4        ES_mean -0.0281617699  0.05     902 -4.152955e-03 prior_resid
#> 5        ES_mean -0.0150526654  0.05     903  3.720456e-04         0.5
#> 6        ES_mean -0.0555518274  0.05     903 -2.015483e-02 prior_resid
#> 7        ES_mean -0.0101609966  0.05     904  8.844061e-04         0.5
#> 8        ES_mean -0.0042415930  0.05     904  8.204147e-03 prior_resid
#> 9        ES_mean -0.0034722846  0.05     905  9.861227e-04         0.5
#> 10       ES_mean -0.0056033661  0.05     905  9.014893e-03 prior_resid
#> 11       ES_mean -0.0072136010  0.05     906  7.823704e-04         0.5
#> 12       ES_mean -0.0249941630  0.05     906 -6.246060e-04 prior_resid
#> 13       ES_mean -0.0266902938  0.05     907  8.748416e-04         0.5
#> 14       ES_mean -0.0357758178  0.05     907  5.092075e-03 prior_resid
#> 15       ES_mean -0.0187264681  0.05     908  4.031562e-04         0.5
#> 16       ES_mean -0.1356154880  0.05     908 -2.058985e-02 prior_resid
#> 17       ES_mean -0.0344875643  0.05     909  7.042424e-04         0.5
#> 18       ES_mean -0.0174182457  0.05     909  8.373618e-08 prior_resid
#> 19       ES_mean -0.0260762539  0.05     910  6.545299e-04         0.5
#> 20       ES_mean -0.0207410466  0.05     910 -4.287226e-03 prior_resid
#> 21       ES_mean -0.0201921671  0.05     911  1.207662e-03         0.5
#> 22       ES_mean -0.0085715083  0.05     911  2.302470e-02 prior_resid
#> 23       ES_mean -0.0215618289  0.05     912  8.935230e-04         0.5
#> 24       ES_mean -0.0189021836  0.05     912  2.107924e-03 prior_resid
#> 25       ES_mean -0.0337139681  0.05     913  6.488192e-04         0.5
#> 26       ES_mean -0.0248922045  0.05     913 -6.231110e-03 prior_resid
#> 27       ES_mean -0.0077331722  0.05     914  6.160282e-04         0.5
#> 28       ES_mean -0.0253530277  0.05     914 -5.717352e-03 prior_resid
#> 29       ES_mean -0.0066226583  0.05     915  6.866722e-04         0.5
#> 30       ES_mean -0.0428447220  0.05     915 -2.082690e-03 prior_resid
#> 31       ES_mean -0.0257779826  0.05     916  9.309828e-04         0.5
#> 32       ES_mean -0.0172138094  0.05     916  8.342412e-03 prior_resid
#> 33       ES_mean -0.0108166937  0.05     917  9.854953e-04         0.5
#> 34       ES_mean -0.0026721969  0.05     917  8.994594e-03 prior_resid
#> 35       ES_mean -0.0209763803  0.05     918  1.029061e-03         0.5
#> 36       ES_mean -0.0133962478  0.05     918  1.061996e-02 prior_resid
#> 37       ES_mean -0.0067052409  0.05     919  7.488377e-04         0.5
#> 38       ES_mean -0.0452721510  0.05     919 -2.287261e-03 prior_resid
#> 39       ES_mean -0.0171274655  0.05     920  5.445785e-04         0.5
#> 40       ES_mean -0.0225841303  0.05     920 -9.998128e-03 prior_resid
#> 41       ES_mean -0.0244856309  0.05     921  7.066320e-04         0.5
#> 42       ES_mean -0.0108609694  0.05     921 -4.790284e-04 prior_resid
#> 43       ES_mean -0.0187403155  0.05     922  9.439261e-04         0.5
#> 44       ES_mean -0.1083388846  0.05     922  9.028625e-03 prior_resid
#> 45       ES_mean -0.0278874444  0.05     923  5.606415e-04         0.5
#> 46       ES_mean -0.0670353425  0.05     923 -1.095067e-02 prior_resid
#> 47       ES_mean -0.0046283968  0.05     924  7.875505e-04         0.5
#> 48       ES_mean -0.0084348573  0.05     924  2.925026e-03 prior_resid
#> 49       ES_mean -0.0128601101  0.05     925  8.280875e-04         0.5
#> 50       ES_mean -0.0105787832  0.05     925  3.177105e-03 prior_resid
#> 51       ES_mean -0.0217201010  0.05     926  8.319955e-04         0.5
#> 52       ES_mean -0.0006481027  0.05     926  3.173836e-03 prior_resid
#> 53       ES_mean -0.0488503744  0.05     927  5.271186e-04         0.5
#> 54       ES_mean -0.0447342686  0.05     927 -1.174745e-02 prior_resid
#> 55       ES_mean -0.0284889171  0.05     928  6.018082e-04         0.5
#> 56       ES_mean -0.0234654032  0.05     928 -5.058277e-03 prior_resid
#> 57       ES_mean -0.0114644053  0.05     929  6.001527e-04         0.5
#> 58       ES_mean -0.0419884078  0.05     929 -5.713073e-03 prior_resid
#> 59       ES_mean -0.0408070969  0.05     930  8.955109e-04         0.5
#> 60       ES_mean -0.0051209675  0.05     930  7.704057e-03 prior_resid
#> 61       ES_mean -0.0189377434  0.05     931  1.013548e-03         0.5
#> 62       ES_mean -0.0008550255  0.05     931  1.094392e-02 prior_resid
#> 63       ES_mean -0.0267808299  0.05     932  8.107030e-04         0.5
#> 64       ES_mean -0.0117045374  0.05     932  7.335099e-04 prior_resid
#> 65       ES_mean -0.0363727610  0.05     933  6.637248e-04         0.5
#> 66       ES_mean -0.0311653803  0.05     933 -4.284156e-03 prior_resid
#> 67       ES_mean -0.0277281772  0.05     934  5.557522e-04         0.5
#> 68       ES_mean -0.0293574302  0.05     934 -8.482179e-03 prior_resid
#> 69       ES_mean -0.0088010394  0.05     935  8.142603e-04         0.5
#> 70       ES_mean -0.0024224613  0.05     935  4.390451e-03 prior_resid
#> 71       ES_mean -0.0258364609  0.05     936  1.256606e-03         0.5
#> 72       ES_mean  0.0020177735  0.05     936  2.598793e-02 prior_resid
#> 73       ES_mean -0.0061874463  0.05     937  9.600635e-04         0.5
#> 74       ES_mean -0.0086882676  0.05     937  4.811866e-03 prior_resid
#> 75       ES_mean -0.0139367888  0.05     938  1.023025e-03         0.5
#> 76       ES_mean -0.0198790704  0.05     938  1.008598e-02 prior_resid
#> 77       ES_mean -0.0059272112  0.05     939  6.666450e-04         0.5
#> 78       ES_mean -0.0242258945  0.05     939 -6.301749e-03 prior_resid
#> 79       ES_mean -0.0189466316  0.05     940  8.518550e-04         0.5
#> 80       ES_mean -0.0093064113  0.05     940  4.769719e-03 prior_resid
#> 81       ES_mean -0.0143926868  0.05     941  6.292290e-04         0.5
#> 82       ES_mean -0.0334679358  0.05     941 -6.536229e-03 prior_resid
#> 83       ES_mean -0.0100686240  0.05     942  1.185231e-03         0.5
#> 84       ES_mean -0.0086190794  0.05     942  2.230214e-02 prior_resid
#> 85       ES_mean -0.0195489453  0.05     943  1.040997e-03         0.5
#> 86       ES_mean -0.0209929142  0.05     943  8.822328e-03 prior_resid
#> 87       ES_mean -0.0117160721  0.05     944  7.640722e-04         0.5
#> 88       ES_mean -0.0249871210  0.05     944 -2.065291e-03 prior_resid
#> 89       ES_mean -0.0217062277  0.05     945  6.611523e-04         0.5
#> 90       ES_mean -0.0236115133  0.05     945 -4.441767e-03 prior_resid
#> 91       ES_mean -0.0202874106  0.05     946  1.141445e-03         0.5
#> 92       ES_mean  0.0073428987  0.05     946  1.907970e-02 prior_resid
#> 93       ES_mean -0.0209606758  0.05     947  7.912832e-04         0.5
#> 94       ES_mean -0.0268454067  0.05     947 -1.655799e-03 prior_resid
#> 95       ES_mean -0.0109981794  0.05     948  8.074871e-04         0.5
#> 96       ES_mean -0.0195325908  0.05     948  1.836081e-03 prior_resid
#> 97       ES_mean -0.0081869167  0.05     949  8.160572e-04         0.5
#> 98       ES_mean -0.0153316174  0.05     949  2.287120e-03 prior_resid
#> 99       ES_mean -0.0237855303  0.05     950  7.650171e-04         0.5
#> 100      ES_mean -0.0415598128  0.05     950  1.540184e-04 prior_resid
#> 101      ES_mean -0.0102763091  0.05     951  8.066557e-04         0.5
#> 102      ES_mean -0.0144205036  0.05     951  6.499964e-04 prior_resid
#> 103      ES_mean -0.0100352031  0.05     952  4.679740e-04         0.5
#> 104      ES_mean -0.0262516106  0.05     952 -8.876000e-03 prior_resid
#> 105      ES_mean -0.0069841653  0.05     953  9.102856e-04         0.5
#> 106      ES_mean -0.0048744042  0.05     953  4.184574e-03 prior_resid
#> 107      ES_mean -0.0032404125  0.05     954  4.307925e-05         0.5
#> 108      ES_mean -0.0609469190  0.05     954 -2.383657e-02 prior_resid
#> 109      ES_mean -0.0037262896  0.05     955  8.384902e-04         0.5
#> 110      ES_mean -0.0129259455  0.05     955  2.897069e-03 prior_resid
#> 111      ES_mean -0.0216663768  0.05     956  8.973775e-04         0.5
#> 112      ES_mean -0.0236862964  0.05     956  2.879664e-03 prior_resid
#> 113      ES_mean -0.0105196246  0.05     957  7.609264e-04         0.5
#> 114      ES_mean -0.0386605499  0.05     957 -8.874099e-04 prior_resid
#> 115      ES_mean -0.0334862609  0.05     958  2.585922e-03         0.5
#> 116      ES_mean  0.0152144107  0.05     958  7.364423e-02 prior_resid
#> 117      ES_mean -0.0273391359  0.05     959  8.241888e-04         0.5
#> 118      ES_mean -0.0242348078  0.05     959 -3.719939e-03 prior_resid
#> 119      ES_mean -0.0188317423  0.05     960  8.057820e-04         0.5
#> 120      ES_mean -0.0280126351  0.05     960 -4.333052e-04 prior_resid
#> 121      ES_mean -0.0236465652  0.05     961  1.143842e-03         0.5
#> 122      ES_mean -0.0142544136  0.05     961  8.815115e-03 prior_resid
#> 123      ES_mean -0.0379054061  0.05     962  8.326733e-04         0.5
#> 124      ES_mean -0.0165234903  0.05     962 -1.955699e-04 prior_resid
#> 125      ES_mean -0.0065032822  0.05     963  1.064068e-03         0.5
#> 126      ES_mean -0.0077043602  0.05     963  6.773789e-03 prior_resid
#> 127      ES_mean -0.0074923782  0.05     964  5.816891e-04         0.5
#> 128      ES_mean -0.0567110118  0.05     964 -6.704181e-03 prior_resid
#> 129      ES_mean -0.0269261728  0.05     965  1.067387e-03         0.5
#> 130      ES_mean -0.0177663433  0.05     965  7.545544e-03 prior_resid
#> 131      ES_mean -0.0114296171  0.05     966  1.050961e-03         0.5
#> 132      ES_mean -0.0057364314  0.05     966  6.137076e-03 prior_resid
#> 133      ES_mean -0.0221632046  0.05     967  5.036534e-04         0.5
#> 134      ES_mean -0.0453840221  0.05     967 -8.731011e-03 prior_resid
#> 135      ES_mean -0.0074617716  0.05     968  6.715439e-04         0.5
#> 136      ES_mean -0.0475371409  0.05     968 -2.828705e-03 prior_resid
#> 137      ES_mean -0.0175429730  0.05     969  7.074412e-04         0.5
#> 138      ES_mean -0.0105520463  0.05     969 -2.140914e-03 prior_resid
#> 139      ES_mean -0.0258840217  0.05     970  7.998610e-04         0.5
#> 140      ES_mean -0.0107678071  0.05     970  3.495728e-04 prior_resid
#> 141      ES_mean -0.0209463229  0.05     971  6.070481e-04         0.5
#> 142      ES_mean -0.1451092588  0.05     971 -5.057103e-03 prior_resid
#> 143      ES_mean -0.0267943285  0.05     972  1.207581e-03         0.5
#> 144      ES_mean -0.0215237884  0.05     972  1.195502e-02 prior_resid
#> 145      ES_mean -0.0070007051  0.05     973  3.250650e-04         0.5
#> 146      ES_mean -0.0458486071  0.05     973 -1.436926e-02 prior_resid
#> 147      ES_mean -0.0124043806  0.05     974  7.470192e-04         0.5
#> 148      ES_mean -0.0144784291  0.05     974 -2.460918e-04 prior_resid
#> 149      ES_mean -0.0216709581  0.05     975  1.381758e-03         0.5
#> 150      ES_mean  0.0133254188  0.05     975  1.686522e-02 prior_resid
#> 151      ES_mean -0.0441307507  0.05     976  8.722693e-04         0.5
#> 152      ES_mean -0.0178152620  0.05     976  9.093661e-04 prior_resid
#> 153      ES_mean -0.0276060110  0.05     977  9.625718e-04         0.5
#> 154      ES_mean -0.0086784668  0.05     977  4.483286e-03 prior_resid
#> 155      ES_mean -0.0105756031  0.05     978  1.286182e-03         0.5
#> 156      ES_mean -0.0135137938  0.05     978  1.350357e-02 prior_resid
#> 157      ES_mean -0.0389105918  0.05     979  5.714532e-04         0.5
#> 158      ES_mean -0.0290365493  0.05     979 -7.104754e-03 prior_resid
#> 159      ES_mean -0.0204122755  0.05     980 -1.344821e-04         0.5
#> 160      ES_mean -0.0747705976  0.05     980 -2.935625e-02 prior_resid
#> 161      ES_mean -0.0240982725  0.05     981  7.528673e-04         0.5
#> 162      ES_mean -0.0098876525  0.05     981  6.461406e-04 prior_resid
#> 163      ES_mean -0.0352434364  0.05     982  3.867369e-04         0.5
#> 164      ES_mean -0.0466299965  0.05     982 -1.145012e-02 prior_resid
#> 165      ES_mean -0.0264262099  0.05     983  3.571106e-04         0.5
#> 166      ES_mean -0.0349413700  0.05     983 -1.148644e-02 prior_resid
#> 167      ES_mean -0.0089266105  0.05     984  1.022904e-03         0.5
#> 168      ES_mean  0.0006474839  0.05     984  6.990405e-03 prior_resid
#> 169      ES_mean -0.0249039280  0.05     985  1.299834e-03         0.5
#> 170      ES_mean  0.0005141923  0.05     985  1.342533e-02 prior_resid
#> 171      ES_mean -0.0061227099  0.05     986  1.280696e-03         0.5
#> 172      ES_mean -0.0005263463  0.05     986  1.222080e-02 prior_resid
#> 173      ES_mean -0.0137682532  0.05     987  1.040625e-03         0.5
#> 174      ES_mean -0.0209069829  0.05     987  5.563497e-03 prior_resid
#> 175      ES_mean -0.0053440312  0.05     988  9.520902e-04         0.5
#> 176      ES_mean -0.0078847687  0.05     988  3.731350e-03 prior_resid
#> 177      ES_mean -0.0187755949  0.05     989  7.776491e-04         0.5
#> 178      ES_mean -0.0163126281  0.05     989 -7.270245e-04 prior_resid
#> 179      ES_mean -0.0137803333  0.05     990  7.946389e-04         0.5
#> 180      ES_mean -0.0210755459  0.05     990  1.596895e-04 prior_resid
#> 181      ES_mean -0.0093988566  0.05     991  1.095637e-03         0.5
#> 182      ES_mean -0.0108880924  0.05     991  8.406134e-03 prior_resid
#> 183      ES_mean -0.0182852402  0.05     992  1.337768e-03         0.5
#> 184      ES_mean -0.0128645745  0.05     992  1.483391e-02 prior_resid
#> 185      ES_mean -0.0107694931  0.05     993  1.268812e-03         0.5
#> 186      ES_mean -0.0069571723  0.05     993  1.210468e-02 prior_resid
#> 187      ES_mean -0.0212550718  0.05     994  5.873287e-04         0.5
#> 188      ES_mean -0.0282778585  0.05     994 -6.607571e-03 prior_resid
#> 189      ES_mean -0.0202663819  0.05     995  5.807587e-04         0.5
#> 190      ES_mean -0.0137904064  0.05     995 -5.274630e-03 prior_resid
#> 191      ES_mean -0.0190500167  0.05     996  7.325688e-04         0.5
#> 192      ES_mean -0.0231945518  0.05     996 -1.042817e-03 prior_resid
#> 193      ES_mean -0.0109141812  0.05     997  6.602126e-04         0.5
#> 194      ES_mean -0.0269940321  0.05     997 -3.297956e-03 prior_resid
#> 195      ES_mean -0.0078487886  0.05     998  6.596963e-04         0.5
#> 196      ES_mean -0.0257047085  0.05     998 -3.120260e-03 prior_resid
#> 197      ES_mean -0.0232479493  0.05     999  5.171659e-04         0.5
#> 198      ES_mean -0.0569212308  0.05     999 -7.117465e-03 prior_resid
#> 199      ES_mean -0.0149730683  0.05    1000  7.270554e-04         0.5
#> 200      ES_mean -0.0334356704  0.05    1000 -9.259374e-04 prior_resid
#>     vine_window      realized exceeded
#> 1             1 -0.0018385881    FALSE
#> 2             1 -0.0018385881    FALSE
#> 3             1 -0.0621711113     TRUE
#> 4             1 -0.0621711113     TRUE
#> 5             1  0.0253128550    FALSE
#> 6             1  0.0253128550    FALSE
#> 7             1  0.0306299881    FALSE
#> 8             1  0.0306299881    FALSE
#> 9             1  0.0103185990    FALSE
#> 10            1  0.0103185990    FALSE
#> 11            1 -0.0086813462     TRUE
#> 12            1 -0.0086813462    FALSE
#> 13            1 -0.0375519981     TRUE
#> 14            1 -0.0375519981     TRUE
#> 15            1 -0.0044717387    FALSE
#> 16            1 -0.0044717387    FALSE
#> 17            1 -0.0072620125    FALSE
#> 18            1 -0.0072620125    FALSE
#> 19            1  0.0303912928    FALSE
#> 20            1  0.0303912928    FALSE
#> 21            1 -0.0079964110    FALSE
#> 22            1 -0.0079964110    FALSE
#> 23            1 -0.0102580352    FALSE
#> 24            1 -0.0102580352    FALSE
#> 25            1 -0.0038800605    FALSE
#> 26            1 -0.0038800605    FALSE
#> 27            1  0.0108246338    FALSE
#> 28            1  0.0108246338    FALSE
#> 29            1  0.0173413876    FALSE
#> 30            1  0.0173413876    FALSE
#> 31            1  0.0167791727    FALSE
#> 32            1  0.0167791727    FALSE
#> 33            1  0.0173273738    FALSE
#> 34            1  0.0173273738    FALSE
#> 35            1 -0.0020944877    FALSE
#> 36            1 -0.0020944877    FALSE
#> 37            1 -0.0254386287     TRUE
#> 38            1 -0.0254386287    FALSE
#> 39            1  0.0015681758    FALSE
#> 40            1  0.0015681758    FALSE
#> 41            1  0.0079634319    FALSE
#> 42            1  0.0079634319    FALSE
#> 43            1 -0.0303947182     TRUE
#> 44            1 -0.0303947182    FALSE
#> 45            1  0.0303391289    FALSE
#> 46            1  0.0303391289    FALSE
#> 47            1  0.0007422696    FALSE
#> 48            1  0.0007422696    FALSE
#> 49            1  0.0096228399    FALSE
#> 50            1  0.0096228399    FALSE
#> 51            1 -0.0160386269    FALSE
#> 52            1 -0.0160386269     TRUE
#> 53            1  0.0045803703    FALSE
#> 54            1  0.0045803703    FALSE
#> 55            1 -0.0204478551    FALSE
#> 56            1 -0.0204478551    FALSE
#> 57            1 -0.0040765962    FALSE
#> 58            1 -0.0040765962    FALSE
#> 59            1 -0.0134517514    FALSE
#> 60            1 -0.0134517514     TRUE
#> 61            1 -0.0261555208     TRUE
#> 62            1 -0.0261555208     TRUE
#> 63            1 -0.0197764673    FALSE
#> 64            1 -0.0197764673     TRUE
#> 65            1 -0.0250208924    FALSE
#> 66            1 -0.0250208924    FALSE
#> 67            1  0.0157902093    FALSE
#> 68            1  0.0157902093    FALSE
#> 69            1  0.0200804051    FALSE
#> 70            1  0.0200804051    FALSE
#> 71            1 -0.0003797436    FALSE
#> 72            1 -0.0003797436     TRUE
#> 73            1  0.0106274406    FALSE
#> 74            1  0.0106274406    FALSE
#> 75            1 -0.0042627866    FALSE
#> 76            1 -0.0042627866    FALSE
#> 77            1  0.0021652375    FALSE
#> 78            1  0.0021652375    FALSE
#> 79            1  0.0021920993    FALSE
#> 80            1  0.0021920993    FALSE
#> 81            1  0.0281930384    FALSE
#> 82            1  0.0281930384    FALSE
#> 83            1  0.0082817798    FALSE
#> 84            1  0.0082817798    FALSE
#> 85            1  0.0048948638    FALSE
#> 86            1  0.0048948638    FALSE
#> 87            1 -0.0034468575    FALSE
#> 88            1 -0.0034468575    FALSE
#> 89            1  0.0120308204    FALSE
#> 90            1  0.0120308204    FALSE
#> 91            1  0.0024226366    FALSE
#> 92            1  0.0024226366     TRUE
#> 93            1  0.0083322551    FALSE
#> 94            1  0.0083322551    FALSE
#> 95            1  0.0216257493    FALSE
#> 96            1  0.0216257493    FALSE
#> 97            1  0.0064520152    FALSE
#> 98            1  0.0064520152    FALSE
#> 99            1 -0.0165274326    FALSE
#> 100           1 -0.0165274326    FALSE
#> 101           2 -0.0344208564     TRUE
#> 102           2 -0.0344208564     TRUE
#> 103           2 -0.0020277570    FALSE
#> 104           2 -0.0020277570    FALSE
#> 105           2 -0.0175553306     TRUE
#> 106           2 -0.0175553306     TRUE
#> 107           2  0.0158232528    FALSE
#> 108           2  0.0158232528    FALSE
#> 109           2 -0.0074703999     TRUE
#> 110           2 -0.0074703999    FALSE
#> 111           2  0.0058796351    FALSE
#> 112           2  0.0058796351    FALSE
#> 113           2  0.1593336266    FALSE
#> 114           2  0.1593336266    FALSE
#> 115           2  0.0312108993    FALSE
#> 116           2  0.0312108993    FALSE
#> 117           2  0.0087928238    FALSE
#> 118           2  0.0087928238    FALSE
#> 119           2 -0.0142490363    FALSE
#> 120           2 -0.0142490363    FALSE
#> 121           2 -0.0013247312    FALSE
#> 122           2 -0.0013247312    FALSE
#> 123           2  0.0415373526    FALSE
#> 124           2  0.0415373526    FALSE
#> 125           2  0.0182112437    FALSE
#> 126           2  0.0182112437    FALSE
#> 127           2  0.0054458532    FALSE
#> 128           2  0.0054458532    FALSE
#> 129           2  0.0167550619    FALSE
#> 130           2  0.0167550619    FALSE
#> 131           2 -0.0053603964    FALSE
#> 132           2 -0.0053603964    FALSE
#> 133           2 -0.0102568397    FALSE
#> 134           2 -0.0102568397    FALSE
#> 135           2 -0.0006267974    FALSE
#> 136           2 -0.0006267974    FALSE
#> 137           2 -0.0084634421    FALSE
#> 138           2 -0.0084634421    FALSE
#> 139           2 -0.0222462629    FALSE
#> 140           2 -0.0222462629     TRUE
#> 141           2  0.0212404474    FALSE
#> 142           2  0.0212404474    FALSE
#> 143           2 -0.0121047106    FALSE
#> 144           2 -0.0121047106    FALSE
#> 145           2 -0.0041641762    FALSE
#> 146           2 -0.0041641762    FALSE
#> 147           2  0.0300536863    FALSE
#> 148           2  0.0300536863    FALSE
#> 149           2  0.0249803196    FALSE
#> 150           2  0.0249803196    FALSE
#> 151           2  0.0255392108    FALSE
#> 152           2  0.0255392108    FALSE
#> 153           2  0.0032120208    FALSE
#> 154           2  0.0032120208    FALSE
#> 155           2 -0.0077427385    FALSE
#> 156           2 -0.0077427385    FALSE
#> 157           2 -0.0484209603     TRUE
#> 158           2 -0.0484209603     TRUE
#> 159           2  0.0271292980    FALSE
#> 160           2  0.0271292980    FALSE
#> 161           2 -0.0169787191    FALSE
#> 162           2 -0.0169787191     TRUE
#> 163           2 -0.0320713652    FALSE
#> 164           2 -0.0320713652    FALSE
#> 165           2  0.0057546384    FALSE
#> 166           2  0.0057546384    FALSE
#> 167           2  0.0056781706    FALSE
#> 168           2  0.0056781706    FALSE
#> 169           2  0.0082682749    FALSE
#> 170           2  0.0082682749    FALSE
#> 171           2  0.0021988549    FALSE
#> 172           2  0.0021988549    FALSE
#> 173           2  0.0252342359    FALSE
#> 174           2  0.0252342359    FALSE
#> 175           2 -0.0089240806     TRUE
#> 176           2 -0.0089240806     TRUE
#> 177           2  0.0024986069    FALSE
#> 178           2  0.0024986069    FALSE
#> 179           2  0.0083738319    FALSE
#> 180           2  0.0083738319    FALSE
#> 181           2  0.0142573427    FALSE
#> 182           2  0.0142573427    FALSE
#> 183           2  0.0236398197    FALSE
#> 184           2  0.0236398197    FALSE
#> 185           2 -0.0134049629     TRUE
#> 186           2 -0.0134049629     TRUE
#> 187           2 -0.0093428320    FALSE
#> 188           2 -0.0093428320    FALSE
#> 189           2  0.0013467049    FALSE
#> 190           2  0.0013467049    FALSE
#> 191           2 -0.0054628367    FALSE
#> 192           2 -0.0054628367    FALSE
#> 193           2 -0.0185334113     TRUE
#> 194           2 -0.0185334113    FALSE
#> 195           2  0.0048388271    FALSE
#> 196           2  0.0048388271    FALSE
#> 197           2  0.0060523258    FALSE
#> 198           2  0.0060523258    FALSE
#> 199           2 -0.0249925345     TRUE
#> 200           2 -0.0249925345    FALSE
# }